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Abstract 19 

The impact of climate change on the development and disintegration of Maya civilization has long 20 

been debated. The lack of agreement among existing palaeoclimatic records from the region has 21 

prevented a detailed understanding of regional-scale climatic variability, its climatic forcing 22 

mechanisms, and its impact on the ancient Maya. We present two new palaeo-precipitation records for 23 

the Central Maya Lowlands, spanning the Pre-Classic period (1800 BCE – 250 CE), a key epoch in the 24 

development of Maya civilization. Lake Tuspan’s diatom record is indicative of precipitation changes 25 

at a local scale, while a beach ridge elevation record from world’s largest late Holocene beach ridge 26 

plain provides a regional picture. We identify centennial-scale variability in palaeo-precipitation that 27 

significantly correlates with the North Atlantic δ14C atmospheric record, with a comparable periodicity 28 

of approximately 500 years, indicating an important role of North Atlantic atmospheric-oceanic forcing 29 

on precipitation in the Central Maya Lowlands. The Early Pre-Classic period was characterized by 30 

relatively dry conditions, shifting to wetter conditions during the Middle Pre-Classic period, around the 31 

well-known 850 BCE (2.8 ka) event. We propose that this wet period may have been unfavorable for 32 

agricultural intensification in the Central Maya Lowlands, explaining the relatively delayed 33 

development of Maya civilization in this area. A return to relatively drier conditions during the Late 34 

Pre-Classic period coincides with rapid agricultural intensification in the region and the establishment 35 

of major cities. 36 

 37 

1. Introduction 38 

During the last decades, a wealth of new data has been gathered to understand human-environmental 39 

interaction and the role of climate change in the development and disintegration of societies in the 40 

Maya Lowlands (e.g., Akers et al., 2016; Douglas et al., 2015, 2016; Dunning et al., 2012, 2015; Lentz 41 

et al., 2014; Turner and Sabloff, 2012). Previous studies have emphasized the impact of prolonged 42 

droughts and their possible link with social downturn, such as the Pre-Classic Abandonment and the 43 

Classic Maya Collapse (Ebert et al., 2017; Hoggarth et al., 2016; Lentz et al., 2014; Kennett et al., 44 

2012; Medina-Elizalde et al., 2010, 2016; Hodell et al., 1995, 2001, 2005; Haug et al., 2003). Less 45 

attention has been given to episodes of excessive rain and floods that may also have severely impacted 46 

ancient Maya societies (e.g. Iannone et al., 2014). This may be testified by the fact that floods, as well 47 

as droughts, are an important theme depicted in the remaining ancient Maya codices (Fig. 1) 48 

(Thompson, 1972), and Mayan mythological stories (Valásquez Garciá, 2006). 49 

 50 

One of the main challenges in palaeoclimatic reconstructions is to unravel climate from human induced 51 

changes. Maya societies played a key role in the formation of the landscape, but the degree of human 52 

induced impact remains highly debated (Hansen, 2017; Beach et al., 2015; Ford and Nigh, 2015). For 53 

example, it is proposed that the increase in sedimentation rate after 1000 BCE at Lake Salpeten 54 

(Anselmetti et al., 2007) and Peten-Itza (Mueller et al., 2009) is related to human induced soil erosion. 55 

However, other high resolution lake records from the area do not show a significant increase in 56 

sedimentation rate during the Pre-Classic or Classic period (e.g. Wahl et al., 2014), and past volcanic 57 

activity could have been responsible for the deposition of ‘Maya Clay’ (Nooren et al., 2017a). 58 

Palynological records from the Central Maya Lowlands (CML, Fig. 2) show no evidence of widespread 59 

land clearance and agriculture before ~400 BCE (Wahl et al., 2007; Islebe et al., 1996; Leyden et al., 60 
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1987), and there is growing consensus that the decline in the percentage of lowland tropical forest 61 

pollen during the Pre-Classic period (Galop et al., 2004; ; Islebe et al., 1996;  Leyden et al, 1987) was 62 

caused by climatic drying instead of deforestation (Torrescano and Islebe, 2015; Wahl et al., 2014;  63 

Mueller et al., 2009). 64 

 65 

In this paper, we present two new palaeo-precipitation records reflecting precipitation changes in the 66 

CML. The records span the Pre-Classic period (1800 BCE – 250 CE), when Maya societies in the CML 67 

transformed from predominantly mobile hunter-gatherers in the Early Pre-Classic Period (e.g. Inomata 68 

et al., 2015; Coe, 2011; Lohse, 2010), to complex sedentary societies that founded impressive cities 69 

like El Mirador by the later part of the Pre-Classic period (Hansen, 2017; Inomata and Henderson, 70 

2016). The period of rapid growth in these centralized societies likely occurred much later than 71 

previously thought, likely sometime after the start of the Late Pre-Classic period around 400 BCE 72 

(Inomata and Henderson, 2016). This raises the question for the reason behind the delayed 73 

development of societies in this area, which was to become the core area of Maya civilization during 74 

the following Classic period (250 – 900 CE). We hypothesize that climate during the Middle Pre-75 

Classic Period (1000 – 400 BCE) may have been less stable than recently reported (Ebert et al., 2017), 76 

and could have been unfavorable for intensification of maize-based agriculture, which formed the 77 

underlying subsistence economy responsible for the development of many neighbouring Mesoamerican 78 

societies during this period.  79 

 80 

The CML have been intensively studied, and several well-dated speleothem, palynological, and 81 

limnological records have been obtained for this area (Díaz et al., 2017; Akers et al., 2016; Douglas et 82 

al.; 2015; Wahl et al., 2014; Kennett et al., 2012; Mueller et al., 2009; Metcalfe et al., 2009; 83 

Domínguez-Vázquez and Islebe, 2008; Galop et al., 2004; Rosenmeier et al., 2002; Islebe et al., 1996) 84 

(Fig. 2 and A1). However, palaeo-precipitation signals from these records and those from adjacent 85 

areas in the Yucatan and Central Mexico exhibit large differences among records (Fig. A2), making the 86 

reconstruction and interpretation of larger-scale precipitation for the region a challenge (Lachniet et al., 87 

2013, 2017; Douglas et al., 2016; Metcalfe et al., 2015). Existing climate reconstructions mostly 88 

represent local changes and are predominantly based on oxygen isotope variability, although some new 89 

proxies have been introduced recently (e.g. Díaz et al., 2017; Douglas et al., 2015). 90 

 91 

We present a regional-scale palaeo-precipitation record for the CML, extracted from world’s largest 92 

late Holocene beach ridge sequence at the Gulf of Mexico coast (Fig. 2B). The beach ridge record 93 

captures changes in river discharge resulting from precipitation patterns over the entire catchment of 94 

the Usumacinta River and thus represents regional changes in precipitation over the CML (Nooren et 95 

al., 2017b). Currently the annual discharge of the Usumacinta river is approximately 2000 m3/s, 96 

corresponding to ~40 % of the excess or effective rain falling in the 70,700 km2 large catchment 97 

(Nooren et al., 2017b). Mean annual precipitation within the catchment is ~2150 mm, with 80 % falling 98 

during the boreal summer, related to the North American or Mesoamerican Monsoon system (Lachniet 99 

et al., 2013, 2017; Metcalfe et al., 2015). The interpretation of the beach ridge record is supported by a 100 

new multi-proxy record from Lake Tuspan, an oligosaline lake situated within the CML, receiving 101 

most of its water from a relatively small catchment of 770 km2 (Fig. 2).  102 

 103 

Regional palaeo-precipitation signal 104 

The coastal beach ridges consist of sandy material originating from the Grijalva and Usumacinta rivers, 105 

topped by wind-blown beach sand (Nooren et al., 2017b). Although multiple factors determine the final 106 

elevation of the beach ridges, it has been shown that during the period 1775 ± 95 BCE to 30 ± 95 CE 107 

(at 1ơ), roughly coinciding with the Pre-Classic period, beach ridge elevation has primarily been 108 

determined by the discharge of the Usumacinta river, in a counter-intuitive manner: low elevation 109 

anomalies of the beach ridges occur in periods with increased river sediment discharge, which in turn is 110 

the product of high precipitation within the river catchment. Under these conditions, beach ridges 111 

develop relatively rapidly, and are exposed to wind for a shorter period. In contrast, during periods of 112 

drought, sediment supply to the coast is reduced, resulting in a decreased seaward progradation rate of 113 

the beach ridge plain. This leaves a longer period for aeolian accretion on the beach ridges near the 114 

former shoreline, resulting in higher beach ridges (Nooren et al., 2017b). Hence, variations in beach 115 

ridge elevation reflect changes in rainfall over the Usumacinta catchment, and thereby represent 116 

catchment-aggregated precipitation, instead of a local signal. The very high progradation rates and the 117 

very robust age-distance model (Fig. A3), with uncertainties of the calibrated ages not exceeding 60–70 118 

years (at 1ơ), effectively allow the reconstruction of palaeo-precipitation at centennial time scale. 119 

 120 
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Local palaeo-precipitation signal: Lake Tuspan record 121 

Diatom communities within oligo- to hypersaline lakes are strongly influenced by lake water salinity 122 

(Reed, 1998; Gasse et al., 1995), and we therefore determined diatom assemblage changes within the 123 

Lake Tuspan sediment record (Fig. 3) to reconstruct palaeo-salinities of the lake water, reflecting 124 

palaeo-precipitation in the lake’s catchment. During dry periods, a reduced riverine input of fresh water 125 

and a lowering of the lake level enhance the effect of evaporation and increase the salinity of the lake 126 

water. The first principal component (PC-1) of the variability in the diatom assemblages is interpreted 127 

as an indicator of lake water salinity (Fig. 3). This interpretation is supported by the fact that high PC-1 128 

values are accompanied by relatively high percentages of Plagiotropis arizonica (Fig. A4), a diatom 129 

species characteristic of high-conductivity water bodies (Czarnecki and Blinn, 1978).  130 

 131 

2. Methods 132 

 133 

Lake Tuspan 134 

Two parallel cores, Tuspán core B and C, were taken with a Russian corer (type GYK) in shallow 135 

water near the inflow of the Rio Dulce, not far from core A which has been studied for pollen (Galop et 136 

al., 2004). Semi-quantitative analyses of Si, S, K, Ca, Ti, Mn and Fe were conducted on both cores 137 

with an X-ray fluorescence core scanner (type AVAATECH) at 0.5 cm intervals. Deposits of large 138 

floods were identified on the basis of elevated concentrations of Si, Fe, Ti and Al, with peak 139 

concentrations exceeding at least the one standard deviation threshold above the mean. 140 

 141 

Core C was investigated for amorphous silica, charred plant fragments, and diatoms (Fig. 3, and A5). 142 

The core was subsampled at 4-12 cm contiguous intervals, each interval representing 25-80 years. In 143 

addition, 37 1-cm samples (representing ~6.5 yr) were processed using the method outlined by 144 

Battarbee (1973) to determine diatom concentrations and to determine short time variability (decadal 145 

scale). Subsamples were treated with HCl (10 %) to remove calcium carbonate. Large organic particles 146 

were removed by wet sieving (250 µm mesh), and charred plant fragments > 250 µm were counted 147 

under a dissection microscope. Remaining organic material was removed by heavy liquid separation 148 

using a sodiumpolywolframate solution with a density of 2.0 g/cm3. A silicious residue, denoted 149 

‘amorphous silica’ was subsequently removed by heavy liquid separation using a 150 

sodiumpolywolframate solution with a density of 2.3 g/cm3, and dry weight was determined after 151 

drying of the samples at 105oC.  152 

Slides were prepared from the remaining material. Diatoms were identified, counted and reported as 153 

percentages of the total diatom sum, excluding the small and often dominant Denticula elegans and 154 

Nitzschia amphibia species. These species show a large variability on short time scales (Fig. A6), and 155 

are not indicative for changes at centennial time scale. We relate changes in diatom assemblages 156 

mainly to lake water salinity changes. The first principal component on the entire assemblage (PC-1) is 157 

interpreted as a palaeosalinity indicator. Diatom taxonomy is mainly after Patrick and Reimer (1966; 158 

1975) and Novelo, Tavera, and Ibarra (2007). We identified Plagiotropis arizonica following 159 

Czarnecki and Blinn (1978), and Mastogloia calcarea following Lee et al. (2014).  160 

 161 

The age-depth model for core C is based on seven AMS radiocarbon dated terrestrial samples and 162 

stratigraphical correlation with core A (Fleury et al., 2014). We used a linear regression between the 163 

available radiocarbon dated samples (Fig. A7) which is comparable with the age-depth model by 164 

Fleury et al. (2014) for the time window between ~2500 BCE and 1000 CE. 165 

 166 

Beach ridge sequence 167 

Beach ridges elevations were extracted from a Digital Elevation Model (DEM) of the coastal plain 168 

along the transects indicated in Fig. 2 (Nooren et al., 2017b). The DEM is based on LiDAR data 169 

originally acquired in April-May 2008 and processed by Mexico’s National Institute of Statistics and 170 

Geography (INEGI), Mexico. The relative beach ridge elevation is defined as the difference between 171 

the beach ridge elevation and the long-term (~500 yr) running mean (Fig. A3). 172 

 173 

Wavelet transfer functions 174 

The relation between our beach ridge and diatom record and other palaeo-precipitation records from 175 

the Maya Lowlands and nearby regions (figure A1 and A2) were investigated by wavelet coherence 176 

(CWT) analyses using the software developed by Grinsted et al. (2004). The record of drift ice from the 177 

North Atlantic (Bond et al., 2001) is bimodally distributed, oscillating between periods of low and high 178 

concentrations of hematite stained grains. The timeseries was therefore transformed into a record of 179 

Clim. Past Discuss., https://doi.org/10.5194/cp-2018-15
Manuscript under review for journal Clim. Past
Discussion started: 6 March 2018
c© Author(s) 2018. CC BY 4.0 License.



4 

 

percentiles based on its cumulative distribution function to avoid leakage of the square wave into 180 

frequency bands outside the fundamental period (Grinsted et al., 2004).  181 

 182 

3. Climate change in the CML during the Pre-Classic period 183 

 184 

Early Pre-Classic Period (1800 – 1000 BCE) 185 

The Lake Tuspan diatom record (Fig. 3) indicates relatively dry conditions, comparable to those during 186 

the preceding Late Archaic Period (~5000 – 1800 BCE). Despite the predominantly dry conditions, 187 

large floods still occurred, as demonstrated by the repetitive input of fluvial material into the lake. 188 

These flood events are identifiable as distinctive dark layers of detrital sediment within the calcareous 189 

lake deposits, and are characterized by elevated concentrations of amorphous silica and charred plant 190 

fragments (Fig. 3 and A4). The average recurrence time of large floods was approximately 50 years, 191 

and periods with highest fluvial sediment input in Lake Tuspan coincided with periods of increased 192 

input of charcoal into Lake Peten-Itza (Schüpbach et al., 2015) (Fig. A2). Because the CML were still 193 

sparsely populated during the Early Pre-Classic period (Inomata et al., 2015) we relate the presence of 194 

charcoal to the occurrence of wildfires.  195 

 196 

The beach ridge record indicates a drying trend that culminated in a prolonged dry period at the end of 197 

the Early Pre-Classic period. Although this exceptionally dry phase is less apparent from Lake 198 

Tuspan’s diatom record (Fig. 3), it has been recorded at many other sites within the CML. At Lake 199 

Puerto Arturo, high δ18O values on the gastropod Pyrgophorus sp. indicate that this was the driest 200 

period since 6300 BCE (Wahl et al., 2014), and the recently extended and improved speleothem δ18O 201 

record from Macal Chasm indicates that this dry period was probably at least as severe as any 202 

prolonged droughts during the Classic and Post-Classic Period (Akers et al., 2016). Dry conditions are 203 

reflected in high Ca/Σ(Ti,Fe,Al) values at Lake Peten-Itza (Mueller et al., 2009), indicating elevated 204 

authigenic carbonate (CaCO3) precipitation relative to the input of fluvial detrital elements (Ti, Fe and 205 

Al) during this period, and water level at this large lake must have dropped by at least 7 m (Mueller et  206 

al., 2009). 207 

 208 

Middle Pre-Classic Period (1000 – 400 BCE) 209 

Both the beach ridge and the Lake Tuspan diatom records indicate a change to wetter conditions 210 

around 1000-850 BCE, causing major changes in hydrological conditions in the CML (Fig. 3). The 211 

diatom assemblages in the Lake Tuspan record show a major change in composition. Species indicative 212 

of meso- to polysaline water almost completely disappear, and are replaced by species indicating fresh 213 

water conditions (Fig. 3 (PC1) and A4). In the lake sediments, this transition is also marked by a 214 

lithological shift from laminated to more homogeneous sediments that lack repetitive flood layers, 215 

while charred plant fragments are almost absent until ~400 BCE. Similar abrupt lithological transitions 216 

were reported from Lake Chichancanab (Hodell et al., 1995) and Lake Peten-Itza (Mueller et al., 2009), 217 

and Wahl et al. (2014) describe a regime shift at Puerto Arturo. The sudden reduction in charred plant 218 

fragments around ~1000 BCE at Lake Tuspan coincides with reduced concentrations of charcoal at 219 

Lake Peten-Itza (Fig. A2) (Schupbach et al., 2015) and Laguna Tortuguero, Puerto Rico (Burney and 220 

Pigott Burney, 1994) indicating rapid climatic changes over a large spatial scale.  221 

 222 

Late Pre-Classic period (400 BCE – 250 CE) 223 

The diatom record at Lake Tuspan (Fig. 3) shows a general increase in lake water salinity, indicating a 224 

gradual shift to drier conditions in the Late Pre-Classic Period. The beach ridge record (Fig. 3) 225 

indicates that a relatively dry period occurred by the onset of the Late Pre-Classic period, which has not 226 

been identified in other proxy records from the region (Fig. A2), although high Pinus pollen 227 

percentages in the pollen record from Petapilla pond near Copan (McNeil, 2010) during this period 228 

may indicate dry conditions, as high Pinus pollen percentage at highland sites could be indicative for 229 

drier conditions (Domínguez-Vázquez and Islebe, 2008). 230 

 231 

Precipitation variability over long time scales 232 

The observed general drying trend over the last thousands of years may be related to the southward 233 

shift of the ITCZ during the late Holocene. The shift occurred in response to orbitally-forced changes 234 

in insolation (Haug et al., 2001), causing a gradual Northern Hemisphere cooling versus Southern 235 

Hemisphere warming (Fig. 3), thereby shifting the ITCZ towards the warming southern hemisphere 236 

(Schneider et al., 2014). A more northerly position of the ITCZ during the Pre-Classic period may be 237 

related to stronger easterly tradewinds and the less frequent occurrence of cold fronts during the Pre-238 

Classic period, as beach ridge morphological changes suggest (Nooren et al., 2017b).  239 
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 240 

Centennial scale precipitation variability  241 

Wavelet coherence (WTC) analysis (Grinsted et al., 2004) indicates in-phase coherence between the 242 

beach ridge record and the recently extended and revised calcite δ18O speleothem record from Macal-243 

Chasm cave (Akers et al., 2016) (Fig. A8). The in-phase relationship between the two records is 244 

significant above a 5% confidence level at centennial timescales during the Pre-Classic Period. We did 245 

not find significant relationships between the beach ridge record and other palaeo-precipiation records 246 

from the CML, nor with records from the Yucatan and Central Mexico (Fig. A2), except for a 247 

significant in-phase coherence at centennial time scale with the Pyrgophorus sp. δ18O record from Lake 248 

Chichancanab (Hodell et al., 1995). 249 

 250 

The coherence between the beach ridge record and the well-dated Macal-Chasm speleothem record 251 

give us confidence that these records reflect regionally coherent variability at centennial timescales 252 

during the Pre-Classic period. Interestingly, the beach ridge record is significantly in anti-phase with 253 

the North Atlantic ice drift record (Bond et al., 2001) and the Northern Hemispheric atmospheric δ14C 254 

record during the Pre-Classic Period (Reimer et al., 2013) (Fig. 4), suggesting an important role of 255 

North Atlantic atmospheric-oceanic forcing on precipitation in the CML. The Northern Hemispheric 256 

atmospheric δ14C record shows a 512-yr periodicity (Stuiver and Braziunas, 1993), which is similar to 257 

the observed ~500 year periodicity of the beach ridge record during the Pre-Classic period. Such a 258 

centennial scale periodicity is not apparent in Lake Tuspan’s diatom record (Fig. 3), nor in any of the 259 

other palaeo-precipitation records from the Maya Lowlands (Fig. A2), but has been identified in the Ti 260 

record from Lake Juanacatlán in the highlands of Central Mexico (Jones et al., 2015). This periodicity 261 

has been related to the intensity of the North Atlantic thermohaline circulation and variations in solar 262 

activity (Stuiver and Braziunas, 1993). 263 

 264 

The coherence with fluctuations in solar irradiance is most evident during the 2.8 ka event, related to 265 

the Homeric Grand Solar Minimum. At this time, a strong decrease in the total solar irradiance resulted 266 

in higher atmospheric 14C production and a change to cooler and wetter condition in the Northern 267 

Hemisphere (e.g. Van Geel et al., 1996), and apparently also a shift to wetter conditions in the CML, 268 

evident from our two new palaeo-precipitation records (Fig. 3). This correlation should not be used as 269 

an analogue for modern precipitation variability, when periods of lower solar activity are associated 270 

with lower Usumacinta River discharge and hence less precipitation in the CML (Fig. A9). 271 

 272 

A similar precipitation response to the late Holocene southward shift of the ITCZ for both Northern 273 

South America and the Maya Lowlands has previously been suggested (Haug et al., 2003), implying 274 

that the beach ridge record should be in-phase with the Cariaco Ti record (Haug et al., 2001). Although 275 

the Cariaco record indicates large centennial scale variability in precipitation over Northern South 276 

America (Fig. 3), this variability is not significantly correlated with the beach-ridge record. The 277 

correlation slightly improved using an updated age-depth model for the Cariaco record (Fig. A10), but 278 

remains insignificant, probably due to uncertainties in the chronological control of both records or due 279 

to a more prominent influence of the Northern Atlantic climatic forcing mechanisms in the Maya 280 

Lowlands. 281 

 282 

4. Precipitation versus human development in the CML 283 

Our records indicate that the Early Pre-Classic period in the CML was relatively dry. During this 284 

period, the CML were still sparsely populated by moving hunter-gatherers. It is highly likely that 285 

before maize became sufficiently productive to sustain sedentism, the karstic lowlands were less 286 

attractive for humans than the coastal wetlands along the Gulf of Mexico and Pacific coast, where 287 

natural resources were abundantly present to successfully sustain a hunting/gathering subsistence 288 

system (Inomata et al., 2015). Reliance on cultivated crops, most notably maize, rapidly increased after 289 

the onset of the Middle Pre-Classic period around 1000 BCE (Rosenswig et al., 2015). Between 1000 – 290 

850 BCE, under still dry conditions, there is evidence for increased maize agriculture in the Pacific 291 

flood basin (Rosenswig et al., 2015), and within the Olmec area at the Gulf of Mexico coast (Arnold 292 

III, 2009), and maize grains (AMS 14C dated to 875 ± 29 BCE) have been found as far as Ceibal within 293 

the CML (Inomata et al., 2015). We speculate that wetter conditions after 850 BCE might have been 294 

unfavorable for a further development of intensive agriculture in the CML. This is supported by 295 

palynological evidence, indicating that widespread land clearance and agriculture activity did not occur 296 

before ~400 BCE (Wahl et al., 2007; Galop et al., 2004; Islebe et al., 1996; Leyden et al., 1987), 297 

despite some early local agricultural activity (Wahl et al., 2014; Rushton et al., 2013; McNeil et al., 298 

2010; Galop et al., 2004). A return to drier conditions during the Late Pre-Classic period coincided 299 
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with an expansion of maize-based agriculture in the CML, and communities within the Maya Lowlands 300 

show a strong and steady development with relatively uniform ceramic and architectural styles 301 

(Hansen, 2017; Inomata and Henderson, 2016). Hence, major development of Maya civilization in the 302 

Central Maya Lowlands occurred only after the onset of the Late Pre-Classic period, when climate 303 

became progressively drier, in line with earlier findings that drier conditions were favorable for 304 

agricultural development in the CML (Wahl et al., 2014). 305 

 306 
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 613 

Figure captions  614 

 615 

Figure 1: The image on page 74 of the Codex Dresden depicts a torrential downpour probably 616 

associated with a destructive flood (Thompson, 1972).  617 

 618 

Figure 2: A large part of the Central Maya Lowlands (outlined with a red dashed line) is drained by the 619 

Usumacinta (Us.) River (A). During the Pre-Classic period this river was the main supplier of sand 620 

contributing to the formation of the extensive beach ridge plain at the Gulf of Mexico coast (B). 621 

Periods of low rainfall result in low river discharges and are associated with relatively elevated beach 622 

ridges. The extend of the watersheds of the Usumacinta and Dulce River is calculated from SRTM 1-623 

arc data (USGS, 2009). Indicated are archaeological sites (squares) and proxy records discussed in the 624 

text; Tu= Lake Tuspan, Ch = Lake Chichancanab, PI = Lake Peten-Itza, MC = Macal Chasm Cave, and 625 

PA = Lago Puerto Arturo.  626 

 627 

Figure 3: Comparison of the Lake Tuspan and beach ridge record (A) with local and proximal records 628 

from Macal-Chasm cave (Akers et al., 2016) and the Cariaco basin (Haug et al., 2001)(B). The Cariaco 629 

record is conform updated age-depth model (Fig. A10). Climate records related to North Atlantic 630 

atmospheric-oceanic forcing are indicated in panel C, including the drift ice reconstruction from the 631 

North Atlantic (Bond et al., 2001), the Northern Hemispheric residual atmospheric δ14C content 632 

(Reimer et al., 2013), the Northern-to Southern hemispheric temperature anomaly (Schneider et al., 633 

2014) and reconstructed Total Solar Irradiance (TSI) (Steinhilber et al., 2012). 634 

 635 

Figure 4:Wavelet Transform Coherence (WTC) analysis between the beach ridge record and the 636 

Northern Hemispheric atmospheric δ14C record (Reimer et al., 2013)(A) and the North Atlantic ice drift 637 

record (Bond et al., 2001)(B). The beach ridge record is significantly in anti-phase with both records at 638 

approximately 500 yr time scale, indicating an important role of North Atlantic atmospheric-oceanic 639 

forcing on precipitation in the Maya Lowlands during the Pre-Classic period. The 5% significance level 640 

against red noise is shown as a thick contour. Arrows indicate phase difference, with in-phase 641 

relationship between records if arrows point to the right. 642 

 643 

Appendix: Additional figures 644 

 645 

Figure A1: Location of proxy records indicated in figure A2 and/or mentioned in the main text. A: 646 

Northern Maya Lowlands (Tz=Tzabnah, PL=Punta Laguna, RS=Rio Secreto, Ch=Chichancanab and 647 

Si=Silvituc), the Central and Southern Maya Lowlands (PA=Puerto Arturo, NRL=New River Lagoon, 648 

Tu=Tuspan, PI/Sa=Peten-Itza and Salpeten, MC/CH=Macal Chasm and Chen Ha, and YB=Yok 649 

Balum), the Maya Highlands (Oc/Na= Ocotalito and Naja, Am=Amatitlan, and  Pet=Petapilla). B: 650 

Central Mexico (Jua=Juanacatlan, CdD=Cueva de Diablo, Jx=Juxtlahuacan, and Alj=Aljojuca) and the 651 

marine record from the Cariaco (C) basin. Annual precipitation (1950-2000) calculated with 652 

WorldClim version 1.4 (release3); Hijmans et al, (2005). Long term (1958-1998) mean ITCZ position 653 

and wind at 925 hPa (m.s-1) for July after Amador et al. (2006), based on NCED/NCAR Reanalysis 654 

data (Kalnay et al., 1996). 655 
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 656 

Figure A2a: Palaeoprecipitation records from the Central Maya Lowlands and Yucatan; Beach ridge 657 

elevation and Tuspan diatom record (this study), compiled record of Central Peten and Yucatan 658 

(Douglas et al., 2016), Salpeten and Chichancanab dD wax-corr. (Douglas et al., 2015), Salpeten δ18O 659 

(Rosenmeier et al., 2012), Peten-Itza δ18O (Curtis et al., 1998), Puerto Arturo δ18O (Wahl et al., 2014), 660 

Macal Chasm δ18O (Akers et al., 2016), Chen Ha δ18O (Pollock et al., 2016), Yok Balum δ18O (Kennett 661 

et al., 2012), Rio Secreto δ18O (Medina-Elizalde et al., 2016), Silvituc DV-pollen (Torrescano-Valle 662 

and Islebe, 2015), Chichancanab S and δ18O (Hodell et al., 1995), Punta Laguna δ18O (Hodell et al., 663 

2007), and Tzabnah δ18O (Medina-Elizalde et al., 2010). 664 

 665 

Figure A2b: Proxy records from the Central Maya Lowlands, the Maya Highlands and Central Mexico. 666 

Peten-Itza charcoal (Schüpbach et al., 2015), Peten-Itza pollen (Islebe et al., 1996), Amatitlan 667 

Aulacoseira and Pinus (Velez et al., 2011), Petapilla Pinus (McNeil et al., 2010), Naja Pinus 668 

(Domínguez-Vázquez and Islebe, 2008), Ocotalito Sr (Díaz et al., 2017), Aljojuca δ18O (Bhattacharya 669 

et al., 2015), Cueva del Diablo δ18O (Bernal et al., 2011), Juxtlahuaca δ18O (Lachniet et al., 2015, 670 

2017), and Juanacatlan Ti -15 point running mean (Jones et al., 2015). 671 

 672 

Figure A3: Age-distance model for beach ridge transect B (after Nooren et al., 2017b). 673 

 674 

Figure A4: Summarized proxy record of Lake Tuspan sediment core C. The 1-4 cm thick dark 675 

palaeoflood-layers contrast with the predominantly light coloured calcareous deposits, and are 676 

characterized by elevated detrital input, resulting in elevated concentrations of Si  (cps = counts per 677 

second), amorphous silica (% of dry weight), and charred plant fragments (number of particles/g dw). 678 

Only the relative abundance of ‘key’ diatom species are shown here and the small and often dominant 679 

Denticula elegans and Nitzschia amphibia species were excluded from the diatom sum. The first 680 

Principal Component axis (PC-1) is interpreted as a lake water salinity indicator, with low values 681 

corresponding to high salinity waters, reflecting relatively dry conditions. Notice abrupt change around 682 

1000 BCE. 683 

 684 

Figure A5: Diatom record for lake Tuspan core C. Diatom concentration (*1000 valves/g dw) were 685 

determined on 37 selected 1-cm samples and diatom percentages (only the ‘key species’ are shown 686 

here) were determined on the 123 subsamples at 4-12 cm contiguous intervals. The small and often 687 

dominant Denticula elegans and Nitzschia amphibia species were excluded from the diatom sum.  688 

 689 

Figure A6: Detailed diatom record around one of the larger flood event ~1200 BCE 690 

 691 

Figure A7: Age-depth model for Tuspan core C. The age-depth model is based on a lineair 692 

interpolation between calibrated ages of radiocarbon dated terrestrial macroremains from core A 693 

(Galop et al., 2004) and core C (Fleury et al., 2014). The model is most reliable for ages between 694 

~2500 BCE and 1000 CE. 695 

 696 

Figure A8: Wavelet Transform Coherence (WTC) analysis between the beach ridge record and the 697 

Macal Chasm δ18O record (Akers et al., 2016). The 5% significance level against red noise is shown as 698 

a thick contour. Arrows indicate phase difference, with in-phase relationship between records if arrows 699 

point to the right. 700 

 701 

Figure A9: Mean annual discharge of the Usumacinta river at Boca del Cerro (Banco Nacional de 702 

Datos de Aguas Superficiales, consulted in January 2017) compared with the total solar irradiance 703 

(TSI). The TSI is comprised of the reconstruction from 1700-2004 (Krivovo at al., 2007), concatenated 704 

with observations from the Total Irradiance Monitor (TIM) on NASA's Solar Radiation and Climate 705 

Experiment (SORCE) from 2005-2011 (Kopp and Lean, 2011). 4.56 watts are added to the TIM 706 

measurements as previous reconstructions were calibrated against less accurate measuring equipment, 707 

compared with the TIM instrument, which led to an overestimation of TSI.  708 

 709 

Figure A10: Updated age-depth model for Cariaco core 1002D. Original model (Haug et al., 2001) has 710 

been based on a lineair interpolation of calibrated ages. We applied a 4th order polynomal fit through 711 

modelled ages calculated with a P_sequence model (Oxcal 4.2) (Bronk Ramsey, 2009, 2016): 712 

k = 10, Marine13 calibration curve, delta R = 15 ± 50, one outlier: NSRL-13050. 713 

 714 

 715 
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